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Abstract—Several problems are studied in the theory of heat conduction in solidsin which the internally
generated heat and/or the surrounding temperature are stochastic functions of position and time. For
linear systems subjected to random disturbances which form a Gaussian process, it is sufficient to
determine the mean and mean square value of the temperature field to fix its complete statistics. This
procedure is carried through for the several problems considered. It is found that the convergence
problems for the infinite series for the mean square temperature (under white noise disturbance) are
much less severe than those encountered in random vibration theory where the governing partial
differential equations are of hyperbolic type rather than parabolic as in heat conduction. Numerical
calculations are carried out with a digital computer in some cases.
Some comments on the problem of the earth’s temperature are made.

NOMENCLATURE Q, heat generated per unit volume;
K, diffusivity; I, slab width or wire length;
) . S. region occupied by the slab or
6, _ 2 heat generation per unit ’ wi%l ; P y
pc €;
volume divided by pc; g, Qfpex; _
o material density; w, weighting function;
c, specific heat; Wa, weighting function of the system
v(xi, f),  temperature distribution; for the nth mode;
Ve, Laplacian operator; T, time limit; _
xt, space coordinates (x, y,2)i=1,2,  So, constant spectral density;
3; h, time interval, heat-transfer
t, time; coefficients ;
E, expectation operator (mathemat- » constant in markoff correlation;
ical expectation); 2 mean square heat generated;
é(xt, 1), random scalar field; A(m), a particular function; ’
Ry, autocorrelation functionof ¢(x?, 7); ~ u(x',#),  difference between solid’s tempera-
&, space point; ture and the surrounding;
T, time instant, also «t; T(7), temperature of surrounding;
V3, Laplacian operator at the point \ time interval;
xt; T3, mean square temperature of sur-
\% Laplacian operator at the point roundings;
xt; r, radial coordinate;
* Part of this stud leted while the auth - radius of sphere;
ar 1§ study was compieted while € author H 3 .
was a visiting Professor in the Spring of 1965 at Tuskegee (), given temperature f!lnctlon ’
Instute, Tuskegee, Alabama. Sn(w), power spectral density of x(z);
+ Formerly Professor of Engineering Science, Purdue w, angular frequency;
University, Lafayette, Indiana. w1, frequency parameter.
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1. INTRODUCTION

IN RECENT years, there have been increasing
applications of probabilistic methods to engin-
eering problems involving random functions
{1-10]. For linear systems with Gaussian pro-
cesses as forcing functions, a complete solution
(all of the multivariate probability distribution
functions of the random field or output) is
available [11-13]. The central aim in the analysis
of Gaussian random processes is to obtain the
autocorrelation function of the output, for
this quantity determines the entire output process
(assuming zero mean).

Considerable work with the Gaussian random
process has been done with Brownian motion
in physics [1] and with noise in electrical engin-
eering [2]. It appears, however, that only recently
has much attention been given to the application
of the Gaussian process to random problems of
an essentially mechanical engineering character.

In this paper, several problems in heat con-
duction involving random functions are solved.
Our problem will be the determination of the
autocorrelation function of the temperature
distribution in terms of the autocorrelation
function of the exciting function. Since we are
treating only stationary Gaussian processes for
the exciting functions, the autocorrelation
function of the temperature (which gives us the
mean square temperature) will be sufficient
(assuming zero mean) to determine the first
probability function of the temperature field.

2. GENERAL THEORY
Before going to specific problems, it is import-
ant to make some general remarks about
random problems of heat conduction. The
basic equation for the linear conduction of heat
in homogeneous isotropic solids is

av(xt, 1)
S o

Heat conduction problems are in general
boundary value and initial value problems
combined, The temperature field may become a
random field in any of five ways:

x V2p(xt, 1) + O(xt, 1) =

* The term Jdv(xt, )/t plays the same role as velocity
damping plays in random vibration theory [6].
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In the subsequent study, problems in the first
and second categories are considered,

When we consider random functions, we will
always understand that there is an underlying
probability space on which a probability measure
is defined. This will enable us to carry our
problem through entirely in a probability-
theoretical manner making unnecessary any
appeal to the ergodic hypothesis. We will, how-
ever, need to modify our random functions in
order that certain integral transforms will exist.
The manner in which this can be done is through
the use of truncated functions [14].

The autocorrelation function of a random
field ¢(x?, 1) with zero mean value is defined as

Ry(x, &1, 7) = E{$(x', ) (€%, 1)} i =1,2,3

in which E is the expectation operator [15]. The
value of the autocorrelation function at ¢ = x¢
and = = tis the mean square value of the random
field. The importance of the autocorrelation
function lies in the fact that, for linear systems,
the autocorrelation functions of the output and
input are simply related. It is also easy to show
that the autocorrelation function of the tempera-
ture field will satisfy the following partial
differential equation

random heat generation,
random boundary values,
random initial conditions,
random material properties, and
random geometry.

aRv aRQ)

2 g2 v — 2 QY

k2 VZ VIR, — k V2 EPe K V2 o
*Ry

+ 3t13t2 = RB (2)
where

Ry = E{v(x}, n) v(x}, 12) }
Ry = E{6(x\, 11) 6(x%, 1)} ©))

Equations for higher order correlations could
also be obtained but usually it is simpler to solve
(1) under appropriate boundary and initial con-
ditions and then form the various correlation
functions from the solution. The latter procedure
can be justified with the use of generalized
harmonic analysis [14].
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In the problems involving normal random
processes, the determination of R, will be suffi-
cient. We now apply the theory to some problems
in heat conduction which may be of some
practical interest.

3. ONE DIMENSIONAL PROBLEMS
{a) Random heat conduction in a thin wire or a
solid bounded by two parallel planes

Consider a thin wire of length 7 or an infinite
slab of thickness /, in which heat is being
generated in each volume element in a random
fashion. Such might be the case if a noise electric
current flows through the wire or slab.

o
INSULATED
s i /

i L22E L, LLl LELYE

X0 X3l X

<

Fic. 1. Random heat conduction in a slab or an insulated
wire.

The temperature distribution is given by the
classical heat equation (for a wire of infinitesimal
diameter)

Pv dv Q

“ax2T ot pe @
O(x, f) is the heat generated per unit volume
and is a random function. v(x, ¢) is the tempera-
ture, « is the diffusivity, p is the material density
and c is the specific heat capacity of the material.
We shall assume that Q(x, ) is a stationary
Gaussian random process, then, because (4) is a
linear equation, the temperature distribution
v(x, ) will also be a Gaussian process [13]. We
seek the RMS value of v(x, £). From the general
theory, we know that the autocorrelation
function of Q(x, 1) is sufficient to calculate the
RMS value of u(x, 7). We now consider the
problem of determining the temperature dis-

tribution with random generation of heat in the
medium, the ends or faces being maintained at
zero temperature. The boundary value problem
is

“oxt = 51 pe ®
inS 20,)=0vl,)=0

To solve, we let

k=T
and Q/pex = q(x, 1), then
% ov
=1 ©
Take the finite sine transform of (6) to get
dv nm\2
T (7)m=ao )
where
‘ 1
vp(r) = j v(xL, 7) sin zj— dxt
0
T 1
and gnlT) = j q(x, 7) sin '}—?i-dxl
a

The Fourier transform of (7) with respect to = is
na\ 2
= iton(® + (77) 30 = dut®

where truncation [14] is used on vs(7) and ga(7)
to insure the existence of

5u(0) =  exp [~ itr](r) dr
and

Gn(§) = [ exp [— ilrlgn(r) dr
From transform of (7), we find

_ gn(0)
0 =23 ity ®

By applying the inversion theorem for Fourier
transforms to (8), we get
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v(x, 1) = lz jexp [i7d) = it f’z(n{-z)r/l)z
dg. sin’?

or

o I

1
vx, 1) = %Z Jsmn—x— dx!.

n=1

J.q(x1 T — X) Wa(X) dA. sm—q}x )

where
1[ explid]
Wa(N) =5, J i+ (e %
_ fexp[— (mnfD2 2], A>0
= {0, A<0

is the usual weighting function for the ath mode
of the system.

The autocorrelation function of the output is
given by

[« | B

_4 nmxl o ommfl
Rv—lzz{jjﬂn lsm ] dx1dé

nym=1 0 0

— 0~

Wa(s) Win(r) ds dr} sin _%x sin r-mle

7

where
Ry(x, &, h) = E{q(x, ) q(¢, 7 + h)}

is the autocorrelation function of g(x, r). We
also used the fact that g(x, 7) is a stationary
random function of time. Ry, for stationary
processes under suitable conditions, is also
given by the temporal average

T

1
T]fl o J g(x, 7)q(¢, v + h)dr

T
with probability one.
In general, Ry(x, & k) must be determined
from the given experimental temporal record of
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q(x, 7). However, some special simple cases are
of theoretical interest:

0 R = 5% 8(x — &) 8(h),

_Ro
K2p2c?
purely random process. S, is a constant. {g)> = 0.
Then

Sol < 1 nw 2
1)=7T———2K2P2c2 nfgexp - 7 ’ l X
n=1
sin'i’l’i‘sin”—’l'f an

The mean square temperature is obtained by
setting x = £ and A = Oin (11). We then have

Sol 1 . nwx
@ = wik2p2c?  n? sint s @ =0
n= 1
or
Sol  (x x

This result is plotted in Fig. 2.
Of course the probability density function is
found from

1 2
PO = 5 e P [ - 5{;2;] (13)

where vrMs = 4/<{v?*> is the root mean square
temperature.

(ii) Ry = So/x2p2c? 8(h), {g> = 0, purely random
process, no space dependence.
The mean square temperature is

16542 <> 1 (1 1
2, — — -—
Wx)) = w2 pc? : nm (n2 + mz)
n,m=1
sin sin T (14)
(i) {Qo®)

Rq——z‘—@e xp[— Bl A1, <g> =0,

Markoff correlation.



HEAT CONDUCTION IN SOLIDS WITH RANDOM EXTERNAL TEMPERATURES 305

{v2)
Vi
(1]
>
< 1ot
W
o
=
Wo7st .
w
vy
Los0f /
g .
Z
So2sf
=
0 %25

v2: Sol
° 8x?p c?

Wy
7402

.
0-50

075 0 =
¢

DISTANCE INTO MEDIUM

Fi1G. 2. Mean square temperature in the solid.

The mean square temperature is

160D N 1
122 p2¢2 z (nz/l)2 (mn[l2)
nm=1
1

EN

)y =

{[ﬁ = (ma /1] [(nn[D)? + (m=[])?]

+ 1 ¢ (15)
[B + (mn/1?] [(nm/1)? + (m=[])?]

1
B+ (/)8 - (MW/I)ZJ}

. hwXx . mmx
Sin —; S;m—5—
I I

{Qq%> and B are constants.

(b) Radiation at the face x = 0 into a medium
of randomly varying temperature; the other
Jace extends to infinity. No heat generation.
(Furnace problem.)

The boundary value problem is

oo

oxz or (1 6)
av(0, =
O _ 0, 1) - 7)) = 0

where T(7) is the random temperature of the
medium to the left of x = 0 and A is a heat-
transfer coefficient.

Letu(x, ) = v(x, ) — T(7), then (16) becomes

Pu_ou o
ox? - or or
(16a)
u(0, 7) _
ox —hu(0,7) =0

This problem may be solved by integral
transforms [16, 17]. Let

uxtr, ) = | utx, 7) Ky, x) dx
then
ux, ) = [ ux(n, 7) Ker, ) dy
where
2\ Thsin (9x) + 7 cos (9x)
K(n, x) = \/ (;) [ (2 + h2)t ]

Using these results in (16a) we obtain

-]

dT
ar + nfug = — d- J K@, x)dx  (17)

[¢]
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Now take the Fourier transform of (17) (using
truncation if necessary) and find

ug = jf exp [~ 7] uk(y, 7) dr

~itTQ) | Kn, ) dx

_ 0
- it + 72 (18)

Applying the inversion theorems, we get

u(x, 7y = j. 21; j exp [ir{] %
z'cm)lf K, x) dx
e diK(n, x) dn
or
u(x, 1) = = § (T~ B) Wb, m) 4B} x
Xn) K(r, x) dy (19)
where

17 it d
WS, o) = ;jex s

{ n>exp[— 7?6l + 8(8), B > 0
0, B<0

and
J K(n, x)dx = lim J exp[— ax] K(y, x) dx
a0
[}

_ Ve _
et + hiyi =

The autocorrelation function of u is

Rux, & ryr+d) =

fJ{I § Re(r — B, +d—B) x

— o — 0

W(B, ) W(B',n)dBdB'} X
M) M) K(n, x) K(y', €) dy do’
where
Rp(r, v + d)y = E{T(r) T(r + d)}

(20)
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is the autocorrelation function of the external
temperature. If 7(r) is a stationary process in

time, then
Rux )= 1§ ( T 7 Retd+8

— B) W(B,m) W(B',n")dB dB’}

X An) An') K(, x) K(', §) dn dy’
and we find
Rie, ) =17 (1 T Retd

+F

-

> (21)

) W) W@, ) agagy [P

x A() A(n") K(n, x) K(x', ) dy dy’

where

—nexp[— %), B> 0
me={" 0 e

We now examine some special cases of (22).

23)

(i) Pure random process for T(r)

Ry(d) = S08(d)
The mean square of v(x, 7) is then given by

(W¥(x)y = Sof T

] [i]
A(n) Mn') K(3, x) K(x', x) dn dy’
or

4s 2oono
e =22 H P
4]

[hsinnx + n cosnx][Asin y'x + 5’ cos n'x]
(n® + B (% + B3

dndy’

(29)
The mean square value of v at the surface x = 0
is given by

o) =32

0
P y2dydy
@+ B2+ (P + 7

25

8 &y
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FiG. 3. Mean square temperature in a semi-infinite solid.

This expression can be evaluated by use of an
electronic digital computer. A plot of equation
(24) is shown in Fig. 3.

(ii) Markoff correlation for T(7)
Rr(d) = <TH exp[- B|d]],
{T? and B are constants.

The mean square temperature at the surface
x=0is

T2 2«)@
w0y = IE H
00

-

.,72 ,,"2
ICGERDICEES

{ 2 q'2
@+ B (02— P L (26)

7’2 7"2
(172 + 7% (92 + ﬂ)}
1
@+ @2+ k)

dn dy’

4. PROBLEMS OF THE SPHERE
(ONE DIMENSIONAL)
We consider the following problems of the
sphere:

(@) Radiation at the surface into a medium of
randomly varying temperature

6 7 8

Qur problem is

A{rv(r,n)} d{rv(r,7)}
or? B ot

@7

dv
-—E‘+h{v—T('r)}-0, atr=a
where 7 = «t and a = radius of the sphere. We
also require that u(r, ) be bounded at r = 0.
It is convenient to transform (27) by setting
u(r, ) = rv(r, 7). Then

Pu _ ou
ort~ or

au(a, du(a, 7) (28)

+ hu(a, 7) — aT(7)] =0

w0,7) =0

The boundary value problem in (28) can also be
interpreted as finding the temperature distribu-
tion in a slab of thickness a with radiation at
x = a and the face x = 0 maintained at zero
temperature.

To solve (28), we first take the Fourier trans-
form with respect to 7 to obtain

(;irz —ila=0 ]
7] 2
%i: — hit = — ahT () (29)
w0,) =0
where

i(r, ) = { exp [ i {rlur, ) dr
and

TQ) = J exp[— i L] T(7) dr

The solution to (29) is

—ahT(Q) {exp vV r] — exp[— /(i D) rl}

ar, 0 =

or

(—kr+vViEDDexp Wi D al — [(— h — /(i Dlexp [— V(i) d]
—ahT()sinh /GO r

ar, §) =

— hsinhy/(il)a + /(i) cosh /(i) a

(30)
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By the convolution theorem for Fourier trans-
forms we obtain

Wr, ) = — ahjfwr(f —BWB AR ()

WE.1) = 5 | expli B x

sinh /(i r d

— hsinh(i{)a + /(i) cosh+/(il)a ¢

(32)

The evaluation of W(8, r) is not difficult because

{ = 0 is not a branch point (as it might first

appear) and the singularities of the integrand of

(32) (treated as a function of the complex variable
z) are simple poles located at

z=1iaella®, n=12,...

where a, are the positive roots of
tan a = afah (33)

Using an appropriate contour, we find

W, r) =

S 20y sin aprja . exp [~ a2f]
a(l —ah)cosan, — aagsina,

L A=1 0’

»B>0
B <0

0
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Thus

u(r, ) = — 2ah )
x .
an Si ay rla

: X
Z a(l — ah) cos an — @ an sin ap L (34)

Texp |- a2 ] 7 - o

Transforming back to t{r, v) we have

o, = —2h A
kil .
an Sin ay, rla

zr {1 —ah)cosay, — agsinay} X

=1

\ (35)

[exo [ o2 2] 7= 0

J

It is easy to show that (35) is the solution to our
problem by substituting in (27) and carrying out
the indicated operations. We now require the
mean square temperature in the sphere. It is
obtained from (35) and is given by

ag om Sin an (#/@) sin am (r/a)

— 2
Wl )y =4k Z P I(L = ah) cos am — an sin an] [(L — ak) coS am — am sin an] <

n, m=sl
o

| [ewi- b+ atpova e re - gy T - g9y apu e (36)
a ¢
and for
(i) Purely random ambient temperature
E{T(r+ - B)T(r — Ba)} = So 8(B2 — B1), S, is a constant,
we find
w0
_450 (aR)Z 9 2 an Gy
<02 (?')> = a2 (r) z a12l + a?ﬂ
n,m=1
sin ay, (rfa) sin am(r/a) 37)
(1 — ah)cos ap — apsinap - (1 —ah)cos am — am Sin ap

Equation (37) is plotted in Fig. 4 for several values of ah.
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(ii) Markoff autocorrelation for the ambient temperature

E{T(r - B)T(r — B2)} = <T exp[~ BlB2 — B[], <T? and B are constants,
we find

2 an Gm 1 1
wep=saai () > 2 e - e e

n,m=1

} sin ax(r/a) . sin am(rfa)

[ —ahycosay — agsinay] [(1 — ah) cos ay — ap sin ay) (38)

(a + a2) (a2 + Ba?)

(b) Sphere with random surface temperature Pu  du
o
In this case the boundary value problem is u(a, 7) = aT(r) (40)
2 {rv(r, 1)} _ o{ru(r, 1)} u0,7) =0
or? = or Taking Fourier transforms with respect to =, we
39) find

v(a, v) = I(r) } aT () sinh \/GOr
o(r, 7) is bounded at r = 0. #r, 0 = "Gnh ViDa “n

where @#(r, ) and T({) are defined just as in
Again substituting u(r, ) = rv(r, ), we have paragraph (a) above.
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By the convolution theorem

Wr,7) =a | T(r — X) WA, r) da

where
1 sinh /(i{)r
WD =0 j PIEA Goh v 9
[ 2 S N nm\2 7 sin mr(r/a)
=1 a Z (-;z—)exp [- (-a—) '\] cosnm ’ r>0
0, A<O

Putting (43) in (42) we have

u(r, vy =2 Z (— it ( ) sin nn(rfa) * Texp [-— (’%)2:\] T(r — N daA

Therefore
o

o, ) = (-) Z (= 1y )sm n(r/a) - jexp [— (’%’)2 A] T(r — A)dA

The mean square temperature is given by

{o¥(r, 7)) = ( )2 i (= Dyn+m (—) ( )smn%rsmﬂ;—rr X

nm=1

«©

[ on[- () (2 ] - o -
}

(i) Purely random process for T(r)
E{T( — M) T(r — A2)} = So8(A2 — A1), S, is a constant,
we find
45 nar . mnr
L)) = ‘—0( ) Z (— = o mzsm~“ sin——
nm==1
211-So exp [mnr/al — exp [—mnr/a] . mmr

R ( ) Z (= hmrim exp [mn] — exp [— mn] S0

Equation (46) is plotted in Fig. 5.

(42)

(43)

(44)

(43%)

(46)



HEAT CONDUCTION IN SOLIDS WITH RANDOM EXTERNAL TEMPERATURES 311

1000
500

100
50
ul
@
e
&
Fi6. 5. Mean square temperature in a w 10
sphere with purely random surface tem- =
perature. WS
W
@
<
=2
=]
@y
z 9
3 osf
=

i ] i 4
0 o2 o4a
RADIAL DISTANCE r/a

L L i 1 ]

o6 o8 Re]

We see from the plot that the amplitude of the temperature fluctuations are sensibly confined to.
a thin surface layer. This is to be compared with the results found by Sommerfeld [18] in the
study of the problem of the earth’s temperature. He shows that rapid temperature fluctuations do
not penetrate far into the earth. Fluctuations of very long periods may penetrate quite deeply.

(i) Markoff process for T(z)

E{T(r = M) T(r — M)} = T exp[~ | da ~ M]]

we get

@y =T )

a? r

(%) (%?) {{(mw:‘aF - B;((mr/a)z + 8]

nm=1

1 1
¥ 7 mfa@ + (nmjaPlGmmlal — B1 T Hnmja + (mafa)t](ommja) + /3]} %

. hmr . mmr
sin —sin —-, 47
a a

(iii) Sphere with random generation of heat. This problem is mathematically equivalent to the prob-
lem in a Section 3, paragraph (a).

HM.—X
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5. TRANSIENT RANDOM HEAT CONDUCTION

To illustrate the methods of solving transient
random heat conduction problems we solve a
simple problem. Although stationarity cannot
be claimed in such problems, we encounter no
difficulty if we perform all our averages over the
ensemble of functions that constitute the random
process.

Consider the problem of an infinite slab as
shown in Fig. 1 in which the face x = [ is main-
tained at the temperature zero while the tempera-
ture of the face x = 0 is suddenly increased to a
temperature F(¢) = v(0, ) which is a random
function. We would like to see how the mean
square temperature in the slab evolves with
time. Our problem is to solve

J. CLIFTON SAMUELS

6% v )
it = ar T = ki,

F(T), 7>0
”(0’7)2{0, F<0 &(48)
v(, ) =0
v(x,0) =0

J

A formal solution to this problem (now using
the Laplace transform as the appropriate
analytical tool) is

We calculate the mean square temperature in the slab from (49) obtaining

r

=4 S cn(5)7) [ [ oo - -]

00

2 2
exp [("—I’z) A+ ('1';—’) )\2] Re(A, A2) dAg d)\z} X sin

If F(r) is a purely random stationary process, that is,

R (M1, A2) = Spd(A2 — A1), S, constant,

then (51) becomes

@, (nm/l) (m=|l)

nm=1

E (= 1= {<nw/l)2 + (maI?

wx, 1) = ] Wr— NFN)dA  (49)
where
——)2 ] s'nﬂ;x), >0

T <0 (50)

nn(l l— x) sin mﬂ(ll— x)’
Rr(A1, A2) = E{F(A1) F(X2)} Sy

{1 — exp —[(nm/l)? + (mw/l)z]f}} %

sin ”1(%_—") sin’—n~"—(ll——x) (52)

We note that as = —+ o0, {v3(r, 7)) approaches the stationary value.
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6. SPECTRAL ANALYSIS

Frequently, it is desirable to look at the
average power distribution with frequency in
both the input and output of linear systems. The
linear system is in effect a filter that selects
power from a certain band of frequencies in the
input. Central to the spectral analysis of station-
ary random functions is the average power
spectral density defined mathematically as the
Fourier transform of the autocorrelation func-
tion. For example, if x(¢) is a stationary random
function (having mean zero) with autocorrelation
function Rgz(h) = E{x(¢) x(t + h)}, the spectral
density of x(¢) would be given by

Se(w) = [ exp[— iwh] Ra(B)dh  (53)

o = angular frequency.

It is easy to show [13] that the average power
spectral density gives the power density dis-
tribution with frequency. The power spectral
density of the temperature in the problem of
Section 3, paragraph (a)(i) above (R, given by
equation (11) with £ = x) is found to be

S 0 1 . JhATX
Sulw) = IK2p2c2Z w? 4+ k3nm|l smz_l— (54)

n=1

Fig. 6 shows a plot of the first term approxima-
tion to Sy(w) at x/l = 1/2.

7. CONCLUDING REMARKS

This paper has shown that the methods of
applied stochastics as employed in electrical
communication technology and random vibra-
tion theory are readily adapted to problems of
random heat conduction in solids. The time
derivative term in the heat equation plays the
same role as velocity damping in random
vibration theory [6]. Convergence problems for
the mean square temperature fields are not as
severe as those for the mean square stress fields
in random vibration problems [8]. We may,
however, expect some convergence problems
for the mean square heat flux for extremely
wide-band random temperature disturbances.
This may arise from the fact that we must
differentiate the temperature series with respect
to the space variables to get the heat flux.

Finally, we remark that our solution methods
include as a special case the problem treated
by J. Dreyfus [19] concerning heat transmission
through building walls with periodic variation
of external temperatures.
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Résumé—Plusieurs problémes théoriques de conduction de la chaleur dans les solides ont été étudiés,
problémes dans lesquels la chaleur engendrée 4 I'intérieur et/ou la température extérieure sont des
fonctions stochastiques de la position et du temps. Pour des systémes linéaires sujets a des peturbations
aléatories gaussiennes, il est suffisant d’avoir la valeur moyenne et la moyenne quadratique du champ
de température pour déterminer complétement I’étude statistique.

Cette fagon de procéder a été poursuivie dans les quelques problémes examinés. On trouve que les
problémes de convergence pour les séries infinies représentant la moyenne quadratique de la tempéra-
ture (avec une perturbation en bruit blanc) sont beaucoup moins sévéres que ceux rencontrés dans la
théorie des vibrations aléatoires ol les équations aux dérivées partielles sont de type hyperbolique
tandis qu’elles sont paraboliques dans la conduction de la chaleur. Des calculs numériques sont
effectués dans quelques cas avec un calculateur numérique.

Quelques commentaires sur le probléme de la température dans le sol ont été donnés.

Zusammenfassung-—Es werden verschiedene Probleme der Wirmeleitung in festen Korpern untersucht,
wobei innere Warmequellen und/oder die Umgebungstemperatur stochastische Funktionene des
Ortes und der Zeit sind. Bei linaren Systemen die willkiirlichen Verteilungen nach einem Gausschen
Prozess unterworfen sind geniigt es den mittleren und den mittleren quadratischen Wert des Tempera-
turfeldes zu bestimmen um der vollstindigen Statistik zu geniigen. Dies ist fiir die verschiedenen
behandelten Probleme durchgefiirht. Es zeigt sich, dass die Konvergenzprobleme fiir die unendlichen
Reihen der mittleren quadratischen Temperatur (unterhalb der weissen Lirmstorung) weit weniger
schwer wiegen als die der Vibrationstheorie, deren bestimmende partielle Differentialgleichungen
hyperbolischen Charakter besitzen im Gegensatz zu den parabolischen der Wirmeleitung. Numerische
Berechnungen wurden fiir einige Fille mit einer Digitalrechenmaschine durchgefiirht.
Hinweise auf das Problem der Erdtemperatur sind gegeben.

AngoTauna—PaccMOTPEHEl HECKOJBKO Bafay TeIUIONPOBONHOCTH TBEPAHX Teil, KOIJa
BHYTpeHHEe TeIIOBRIAEICHMe H/IWIN TeMIeparypa OKpYKalolllell cpelsl ABJAKTCA CTOXa-
cTuuecKMMM QYHKUMAMN KOODIMHAT M BpemeHH. [[JIA IMHEMHBIX CHUCTEM, MOJBEPMKEHHBIX
TIPOMBBOJIBHEIM BOBMYINEHHAM, MPUBOIAMNM K IIpOIleccy, onuckBaemomy saxonom Iaycca,
HOCTATOYHO ONpPEfelMTh CPeSHIOl H CpelHe-KBAAPATVHYHYI0 BelMIMHY TeMINepaTypHOTO
10311, YTOOHl YCTAHOBUTD €70 MOJHYIO CTATUCTHKY . DTa ONEePalia BHIOJIHATACH B HECKOJIBKIIX
M3 pacCMOTPEHHHX 3afad. BHIo moKasaHo, YTO 3a5ayd CXOXUMOCTH GeCKOHEYHBIX PANOB
CpenHe-KBALPATHUHON TeMmeparTyps (npm Gejo-iIyMOBHIX BO3MYUIEHHAX) ropaspgo MeHee
CTpOTM, ¥eM Bajauyl, BCTPEYAMHMeCA B TEOPMM NPOT3BOJNBHON BHOpAIMH, IIe OCHOBHEIE
YPaBHEHMA B YACTHBIX [[POUBBOMHKIX ABJIAIOTCA YPABHEHUAMU rUIeploInuecKoro Tnma, a He
1napaboIMIecKoro, KaK STO UMEeT MeCTO B Baa4aX TeINIONPOBOAHOCTH. B HEKOTOPHIX CIy4Yaax
YHUCIIEHHEE PACUETH MPOMSBONUINCH C MOMOIIBI0 BRIUYMCIHUTENbHOM MAaIIHHEL.

Penrenne yKa3aHHLIX 33734 [OSBOJIWIO CHEIATH HEKOTOPHE 3aMedYaHud, OTHOCHIINECH K

safgaue O TEMIEPATYPe 3eMJIH.



