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Abstract-Several problems are studied in the theory of heat conduction in solidsin which theintemally 
generated heat and/or the surrounding temperature are stochastic functions of position and time. For 
linear systems subjected to random disturbances which form a Gaussian process, it is sufficient to 
determine the mean and mean square value of the temperature field to fix its complete statistics. This 
procedure is carried through for the several problems considered. It is found that the convergence 
problems for the infinite series for the mean square temperature (under white noise disturbance) are 
much less severe than those encountered in random vibration theory where the governing partial 
differential equations are of hyperbolic type rather than parabolic as in heat conduction. Numerical 
calculations are carried out with a digital computer in some cases, 

Some comments on the problem of the earth’s temperature are made. 

NOMENCLATURE 

diffusivity ; 

= z heat generation per unit 

volume divided by pc; 
material density; 
specific heat ; 
temperature distribution; 
Laplacian operator; 
space coordinates (x, y, z) i = 1,2, 
3; 
time ; 
expectation operator (mathemat- 
ical expectation); 
random scalar field; 
autocorrelation function of +(xf, t); 
space point; 
time instant, also K?; 
Laplacian operator at the point 

1. 
x1, 
Laplacian operator at the point 
4; 

* Part of this study was completed-while the author 
was a visiting Professor in the Spring of 1965 at Tuskegee 
Instute, Tuskegee, Alabama. 

t Formerly Professor of Engineering Science, Purdue 
University, Lafayette, Indiana. 

Q, 
A 
S, 

49 
w, 
W78, 

T, 
sot 
h, 

T(T), 
4 
O-3, 

heat generated per unit volume; 
slab width or wire length; 
region occupied by the slab or 
wire ; 
Q/PW 
weighting function; 
weighting function of the system 
for the nth mode; 
time limit; 
constant spectral density; 
time interval, heat-transfer 
coefficients ; 
constant in markoff correlation; 
mean square heat generated; 
a particular function; 
difference between solid’s tempera- 
ture and the surrounding; 
temperature of surrounding; 
time interval; 
mean square temperature of sur- 
roundings ; 
radial coordinate; 
radius of sphere; 
given temperature function; 
power spectral density of x(t); 
angular frequency; 
frequency parameter. 

301 



302 J. CLIFTON SAMUELS 

1. INTRODUCTION 

IN RECENT years, there have been increasing 
appli~tions of probab~isti~ methods to engin- 
eering problems involving random functions 
[I-IO]. For linear systems with Gaussian pro- 
cesses as forcing functions, a complete solution 
(all of the multivariate probability distribution 
functions of the random field or output) is 
available [l l-131. The central aim in the analysis 
of Gaussian random processes is to obtain the 
autocorrelation function of the output, for 
this quantity determines the entire output process 
(assuming zero mean). 

Considerable work with the Gaussian random 
process has been done with Brownian motion 
in physics [l] and with noise in electrical engin- 
eering 121. It appears, however, that only recently 
has much attention been given to the application 
of the Gaussian process to random problems of 
an essentially mechanical engineering character. 

In this paper, several problems in heat con- 
duction involving random functions are solved. 
Our problem will be the determination of the 
autocorrelation function of the temperature 
distribution in terms of the autocorrelation 
function of the exciting function. Since we are 
treating only stationary Gaussian processes for 
the exciting functions, the autocorreIation 
function of the temperature (which gives us the 
mean square temperature) will be sufficient 
(assuming zero mean) to determine the first 
probability function of the temperature field. 

2. GENERAL THEORY 

Before going to specific problems, it is import- 
ant to make some general remarks about 
random problems of heat conduction. The 
basic equation for the linear conduction of heat 
in homogeneous isotropic solids is 

a+(, t) 
K V%(x~, t) f 0(x$, t) = at u>* 

Heat conduction problems are in general 
boundary value and initial value problems 
combined. The temperature field may become a 
random field in any of five ways: 

-.~ - 
* The term &(x6, t)/ZV plays the same role as velocity 

damping plays in random vibration theory 161. 

(1) random heat generation, 
(2) random boundary values, 
(3) random initial conditions, 
(4) random material properties, and 
(5) random geometry. 

In the subsequent study, problems in the first 
and second categories are considered. 

When we consider random functions, we will 
always understand that there is an underlying 
probability space on which a probability measure 
is defined. This wil1 enable us to carry our 
problem through entirely in a probability- 
theoretical manner making unnecessary any 
appeal to the ergodic hypothesis. We will, how- 
ever, need to modify our random functions in 
order that certain integral transforms will exist. 
The manner in which this can be done is through 
the use of truncated functions [14]. 

The autoco~elation function of a random 
field &@, t) with zero mean value is defined as 

R&8, E”, t, T) = E{y$(x”, t) #(P, T)} i = 1,2, 3 

in which E is the expectation operator [15]. The 
value of the autocorrelation function at 5a = xf 
and T = t is the mean square value of the random 
field. The importance of the autocorrelation 
function lies in the fact that, for linear systems, 
the autocorrelation functions of the output and 
input are simply related. It is also easy to show 
that the autocorrelation function of the tempera- 
ture field will satisfy the following partial 
differential equation 

where 

R, = Jfwx:, t1) 44, t2)> 

R, = Em;, td fwi, t2)) (3) 

Equations for higher order correlations could 
also be obtained but usually it is simpler to solve 
(1) under appropriate boundary and initial con- 
ditions and then form the various correlation 
functions from the solution. The latter procedure 
can be justified with the use of generalized 
harmonic analysis [ 141. 
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In the problems involving normal random 
processes, the determination of Ra will be suffi- 
cient. We now apply the theory to some problems 
in heat conduction which may be of some 
practical interest. 

3. ONE DIMENSIONAL PROBLEMS 

(a) Random heat conduction in a thin wire or a 
solid bodied by two parallel planes 

Consider a thin wire of length I or an infinite 
slab of thickness I, in which heat is being 
generated in each volume element in a random 
fashion. Such might be the case if a noise electric 
current flows through the wire or slab. 

FIG. I. Random heat conduction in a slab or an insulated 
wire. 

The temperature distribution is given by the 
classical heat equation (for a wire of infinitesimal 
diameter) 

a2u a2) Q icay2 = at - --- (4) 

Q(x, t) is the heat generated per unit volume 
and is a random function. U(X, t) is the tempera- 
ture, K is the diffusivity, p is the material density 
and c is the specific heat capacity of the material. 
We shall assume that Q(x, 1) is a stationary 
Gaussian random process, then, because (4) is a 
linear equation, the temperature distribution 
U(X, t) will also be a Gaussian process [13]. We 
seek the RMS value of U(X, t). From the general 
theory, we know that the autocorrelation 
function of Q(x, t> is sufficient to calculate the 
RMS value of V(X, t). We now consider the 
problem of determining the temperature dis- 

tribution with random generation of heat in the 
medium, the ends or faces being maintained at 
zero temperature. The boundary vaiue problem 
is 

in S ~(0, t) = v(l, t) = 0 

To solve, we let 

Kt = 7 

and Q/P~K = 4(x> T), 

azv au -=--- 
a9 a7 q 

Take the finite sine transform of (6) to get 

dun 
z+ y2vn 0 = 478(T) 

where 

1 

J 

1 

v9&(7) = ~(9, T) sin ‘7 dxr 

n 

(5) 

then 

(6) 

(7) 

1 

and qn(7) = 
f 

c&xi, 7) sin ‘F dlrr 

0 

The Fourier transform of (7) with respect to 7 is 

where truncation [14] is used on v%(r) and q%(7) 
to insure the existence of 

O&i) =_[exp I- ilT1 on(~) d7 

and 

&(5) =_@p [- i571 q,LT) d7 

From transform of (7), we find 

By applying the inversion theorem for Fourier 
transforms to (8), we get 
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U(X, T) = f 
OD la0 CJ 

q(x, T). However, some special simple cases are yT exp [id] 7 4&I 
15 + (m/f)‘J 

of theoretical interest: 

n=1 -* 

d[ . sin ‘TX 
(9 

R, = A 6(x - f) S(h), 
K2p2C2 

or 
* 1 purely random process. So is a constant. (q) = 0. 

D(X, 7) = + CJ 
1 

sin ‘y dxl . Then 

la=1 0 
CQ 

s 

q(xl, T - A) W,(A) dh . sin ‘7 (9) 
Rv=&az$exp[-(!$2) I] x 

?8=1 
--m 

where 
m sinEFsin’T (11) 

w,(A) = 1 
J 

exp W51 
27r it + (n?r/l)2 

d5 

The mean square temperature is obtained by 
--m setting x = E and h = 0 in (11). We then have 

exp [- (n7r/l)s A], X > 0 = 

0, A<0 

is the usual weighting function for the nth mode 
of the system. or 

The autocorrelation function of the output is 
given by 

m 2 1 -1 
(a2) = jK2p2c2 1 “‘(5) (I -$), (V) = 0. (12) 

4 
Rv = p XJJ n77x1 m?rp 

sin __ sin ___ 
1 

I dxld41 This result is plotted in Fig. 2. 

n,m=1 0 0 Of course the probability density function is 
found from m CD 

JJ R,(xl, 51; h + s - I) . ’ (10) 

--ar--m 
p(u) = &mysexp 

V2 

[ 1 -_- 

XV2) 
(13) 

W,,(s) W,(r) ds dr sin !F sin’? 
J 

where rn~s = 2/(v2) is the root mean square 
temperature. 

where 

J&(x, f, h) = E(q(x, T) 4(& 7 + h)] 

is the autocorrelation function of q(x, T). We 
also used the fact that q(x, T) is a stationary 
random function of time. R,, for stationary 
processes under suitable conditions, is also 
given by the temporal average 

T 

with probability one. 
In general, R&c, 5, h) must be determined 

from the given experimental temporal record of 

(ii) R, = &/K2p2C2 6(h), (q) = 0, purely random 
process, no space dependence. 

The mean square temperature is 

(v2(x)> = 
?z.m=l 

sin’ysinTF5 (14) 

(iii) 
R P =(-P_o”->exp[-j3\/rI], (q) =Q, 

l&w 

Markoff correlation. 
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DISTANCE INTO MEDIUM 

Fro. 2. Mean square temperature in the solid. 

The mean square temperature is 

1 1 
- fp + (m/P)]@ - (mTr/pj) 

n7rx 
sin- sin= 

1 1 

( Qo2> and @ are constants. 

where T(T) is the random temperature of the 

1 
medium to the left of x = 0 and h is a heat- 
transfer coefficient. 

Let 24(x, 7) = 0(x, T) - T(T), then (16) becomes 

J2u au JT 
$X2 -=%+a 7 

MO, 7) 
_ -hu(O, T) = 0 

ax 

WW 

This problem may be solved by integral 
transforms [16, 11. Let 

W&I, 7) = 7 4x9 7) K(rl, x) dx 
0 

then 

(b) Radiation at the face x = 0 into a medium u(x, 7) = $ u&, 7) WI, x) d? 

of randomly varying temperature; the other 
face extends to infinity. No heat generation. 

where 

(Furnace problem.) h sin (TX) + 77 cos (TX) 
The boundary value problem is 4% x) = 

_2 

JO[ - 7r (v2 + h2)” I 
ak au -=- 
ax2 aT 

Using these results in (16a) we obtain 

@$$‘! - h[u(O, T) - T(T)] = 0 

(16) 
dm dT * 
;; -t q2m = - rT 

s 
K(q x) dx (17) 

0 
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Now take the Fourier transform of (17) (using 
trun~tion if necessary) and find 

UK = 7 exp [- XT] u&, T) dT 
--m 

Applying the inversion theorems, we get 

24(X, 7) = - 
Yco J J 2; exp [i~c] x 

0 -co 

i 

- 72expF q2Pl + W+), B > 0 
ZZ 

0, PC0 
and 

03 00 

J 
K(q, X) dx = lim exp ]- CCC] K(Q X) dx 

C-4 J 
n ll 

h v’W74 -- = A(,) = y@-+ h2)k - 

The autocorrelation function of M is 

R,(x, I, 7, 7 + d) = 

is the autocorrelation function of the external 
temperature. If T(r) is a stationary process in 
time, then 

Ru(x, & d) = i 7 { 7 “s R&d + /? 

- P’) @VL “,,“J+‘(;,;;!b dP’ > 

x XV) XT’) K(rl, x) K(7)‘, 5) dq dq’ 

and we find 

where 

@@I = { - + exp [-- 72Pl, B > 0 
o f j3 < 0 (23) 

We now examine some special cases of (22). 

(i) Pure ~~d~~ process for T(T) 

RT(@ = S&0 

The mean square of ZJ(K, T) is then given by 

m 02 W(x)> = so JJ exp [-- ~‘~4 _--..-. $2 + lf2 I a=o+ a 0 

[h sin TX + r) cos TX] [h sin v’x + T’ cos T’X] do drl, 
(7s + h21 (q’2 + h2) . , _ . 

(24) 

The mean square value of v at the surface x = 0 
is given by 

(v2(())> = 4Sohz x 
772 

0 0 

Is 72 7’2 dy d+ _~__..__~ --- 
(+ + lz“) ($2 + h? (?” + T’~) 

(25) 

*co 
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Distance, hx 

FIG. 3. Mean square temperature in a semi-infinite solid. 

This expression can be evaluated by use of an 
electronic digital computer. A plot of equation 
(24) is shown in Fig. 3. 

(ii) Markof correlation for T(T) 

RAd) = <C> exp I. - is 1 d 1 I, 
(c) and p are constants. 

The mean square temperature at the surface 
x=Ois 

2 ‘2 

-p 

@I2 - 8 (‘I2 + ;2):V’2 - p) 

2 ‘2 

+ G2 + $2;+2 + p) i 

(72 + ,:,!2 + h2) d? d4 

4. PROBLEMS OF THE SPHERE 

(ONE DIMENSIONAL) 

We consider the following problems of the 
sphere : 

(a) Radiation at the surface into a medium of 
randomly varying temperature 

Our problem is 

a2 {rv (r, 7) 1 8 {ru (r, T)> 
a+ = a7 

au - gr + h(u - T(T)} = 0, at r = a 

(27) 

where T = Kt and a = radius of the sphere. We 
also require that u(r, 7) be bounded at r = 0. 
It is convenient to transform (27) by setting 
u(r, T) = ru(r, T). Then 

a34 au -- =- 
a+ a7 1 

- 7 + h[u(a, T) - aT(T)] = 0 I- 
(28) a4-h 4 

U(o, T) = 0 J 
The boundary value problem in (28) can also be 
interpreted as finding the temperature distribu- 
tion in a slab of thickness a with radiation at 
x = a and the face x = 0 maintained at zero 
temperature. 

To solve (28), we first take the Fourier trans- 
form with respect to 7 to obtain 

d%i - 
dr2 

-i[ii=O 

dl 
s - hzi = - ahT([) 

where 

40, 5) = 0 J 

ii(r, 5) = 7 exp [- i [T] u(r, T) dr 
--co 

and 

?@J = 7 exp [- i [T] T(T) dT 
--m 

The solution to (29) is 

- ah T (5) {exp [d/(i 1) r] - exp [- l/O 1) r]} 
‘@’ ‘) = [(_h+l/ii 01) exp [l/G 5) a] - [(- h - d(i 5)] exp [- l/(i 5) a] 

or 

- ahT@sinhd(inr -- 
‘(” ‘) = 1 h sinh d(i 5) a + d(i 0 cash l/(i 5) a (30) 
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By the convolution theorem for Fourier trans- 
forms we obtain 

sinh d(i 5) r __________I 
- h sinh y/(i 5) a -+ 2/(i 5) cash y’(i 0 a d5 

(32) 
The evaluation of W(j3, r) is not difficult because 
< = 0 is not a branch point (as it might first 
appear) and the singularities of the integrand of 
(32) (treated as a function of the complex variable 
z) are simple poles located at 

t=ia,2/az, n-1,2,... 

where apt are the positive roots of 

tan a = a/ah 

Using an appropriate contour, we find 

WS, r) = 

(33) 

ic * 2an sin a98 rJa , exp [- a'/31 

Q(1 - ah) cos as --aa,$&i 3 B ’ O 
/ n=1 

I O- B<O 

Thus 

u(r, T) = - 2 ah 
m 

c am sin Oft r/a 
a(1 - ah) cos an - a an sin an 

' 

?&=l 

(34) f exp [- a:$] T(T - /I>&3 

a 

Transforming back to a(r, T) we have 

u(r, 7) = - 2 h I 
m 

c an sin an r]a i 
r ((1 - ah) COST% - aR sinan) 

?Z=l 

~exp[-a~$~Q~-&d/3-x i (35) 
t 

0 

It is easy to show that (35) is the solution to our 
problem by substituting in (27) and carrying out 
the indicated operations. We now require the 
mean square tem~rature in the sphere. It is 
obtained from (35) and is given by 

m 

(1.9 (r, T)) = 4 h2 
an am sin a, (r/a) sin am (r/a) -I- ._ ---~- ___. .._~_ 

[Cl - ah) ~0s am - an sin an] [(l - A) COS am - am sin am] 
X 

me3 

JJ exP ] - (ai 81 + a$ /%&@‘I E (7’ (T - 81) T (T - 82) > d/31 dj32 
0 0 

and for 

(i) Purely random ambient temperature 

E {T(T - ,'%)T(T - /32)3 = SO a(/32 - /US, is a constant, 
we find 

G2 (r)> = 
4 So (a@% a 2 c0 

a2 r 0 c 

apt am 
a;4 + a2 

fL?l$=l 

(34) 

sin an (r/a) sin am(r/a) 
- 

(1 - ah) COSTS - ansinan (1 -ah) COS& - am sina, (37) 

Equation (37) is plotted in Fig. 4 for several values of ah. 
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FIG. 4. Mean square temperature in a 
sphere with surface radiation into a 
medium with random temperature 

fluctuation. 

0 @2 06 I 

Radial distance, r/u 

(ii) Markoflautocorrelation for the ambient temperature 

E (T(T - 81) T(r - /32)) = (Tt) exp [- /3/& - /%(I, {Ti) and ,Q are constants, 

we find 

(~2 (r)) = 4 a= (jr,“} h 
n.m=l 

1 

+ (a: + a$) (a”, + Isa21 > 

sin an(r/u) sin am(r/o) 

’ [(l - ahf Cos uR - an sin as] ’ [(z - ah) cos an - an sin a%] (38) 

(b) Sphere with random surface temperature 

In this case the boundary value problem is 

a2Mr, 41 ah+-, $1 
--jp----= a7 1 
v(a, T) = T(T) 

Y@, T) is bounded at r = 0. J 

Again substituting u(r, T) = rv(r, T), we have 

u(u, T) = aT(T) 

u(0, T) = 0 1 
Taking Fourier transforms with respect to 7, we 
find 

aT(‘(E) sinh y/(@r 
C(r, 5) = - . 

smh z/(i5>a (411 

where C(r, 6) and T(t) are defined just as in 
paragraph (a) above. 
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By the convolution theorem 

where 

(42) 

(43) 

I 0, 

Putting (43) in (42) we have 

u(r, T) = Z~(-l).“~~)sin”“““.jexp[-~~jll]~(~-i)dh 

t$=* 0 

Therefore 

4~~ T) = 2 ($ 2 (- 1)*+1 c) sin nn(r/u> l 1 exp [ - cl2 A] ~(7 - X) dh (44) 

n=1 0 

The mean square temperature is given by 

(u2(r, 7)) = f (:)’ 2 (- l)“+” (!!t) e) sin ysiny x 

n.WZ=l 

7 7 exp [- Erhl - e)sA~] E(T(7 - Xl)T(r - k)]dAldhz (45) 

0 0 

(i) Purely random process for T(T) 

E(T(7 - Al) T(T - X2)) = S&X2 - Xl), SO is a constant, 

we find 

2rrSo a 2 * -- =-- - 
oc 

m+l 

a2 n 
(- 1) 

m exp [m4al - exp [-+&al sin yLr 
exp [m-l - exp [ - m9r] a 

(46) 

?7$=?_ 

Equation (46) is plotted in Fig. 5. 
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w 
s 
‘; 

FIG. 5. Mean square temperature in a k? 
sphere with purely random surface tern- !k 

perature. v 

P 
2 
z 

i 

0.2 04 0.6 0.0 I.0 
RADIAL DISTANCE f/a 

We see from the plot that the amplitude of the temperature fluctuations are sensibly confined to, 
a thin surface layer. This is to be compared with the results found by Sommerfeld [18] in the 
study of the problem of the earth’s temperature. He shows that rapid temperature fluctuations do 
not penetrate far into the earth. Fluctuations of very long periods may penetrate quite deeply. 

(ii) ~arko~proce~~ for T(T) 

we get 

1 1 
+ - -- 

KN42 f (~~/421K~d42 - PI + [(nv/aY -b (m~/a)2][(m~/a)2 + fi] > ’ 

(iii) Sphere with random generation of heat. This problem is ma~emati~lly equivalent to the prob- 
lem in a Section 3, paragraph (a). 

H.M.-X 
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5. TRANSIJZNT RANDOM HEAT CONDUCTION azv au 
To illustrate the methods of solving transient T = kt, 

random heat conduction problems we solve a 
ax2 aT' 

simple problem. Although stationarity cannot 

1 

F(T)> 
be claimed in such problems, we encounter no NO, 7) = o 

r>o 
* (48) , T<O 

difficulty if we perform all our averages over the 
ensemble of functions that constitute the random v(Z, T) = 0 

process. 
Consider the problem of an infinite slab as 

v(x, 0) = 0 

shown in Fig. 1 in which the face x = 1 is main- A formal solution to this problem (now using 
tained at the temperature zero while the tempera- the Laplace transform as the appropriate 
ture of the face x = 0 is suddenly increased to a analytical tool) is 
temperature F(t) = ~(0, t) which is a random 
function. We would like to see how the mean z’(x, T) = j w(T - h) F(A) dX (49) 
square temperature in the slab evolves with a 

time. Our problem is to solve where 

(50) 

We calculate the mean square temperature in the slab from (49) obtaining 

(u2(r, T)) = $ 2 (- l)n+m E) e) {i j eXp [- rf)2 - e)2] 7 x 

n,m=l 00 

exP [rf)zAi + (?!“A21 R&hi, Xs)dArd&) x sinnn(‘; X)sinma(‘l_ x), 

h(h, h2) = E{F(hl) F(A2)) (51) 

If F(T) is a purely random stationary process, that is, 

R (Al, h2) = S&h2 - Al), S, constant, 

then (51) becomes 

<u2(r, T)> = % 2 (- l)n+m ((n$;‘)+(~;+;l)2 * (1 - eXp -[(nT#’ + (m,/l)2]T,} X 

n,m=1 

nsr(f - x) 
sin ----__ sin 

m?r(l - x) 

1 1 (52) 

We note that as T -+ co, (u2(r, T)} approaches the stationary value. 
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6. SPECTRAL ANALYSIS 
Frequently, it is desirable to look at the 

average power distribution with frequency in 
both the input and output of linear systems. The 
linear system is in effect a filter that selects 
power from a certain band of frequencies in the 
input. Central to the spectral analysis of station- 
ary random functions is the average power 
spectral density defined mathematically as the 
Fourier transform of the autocorrelation func- 
tion. For example, if x(t) is a stationary random 
function (having mean zero) with autocorrelation 
function R&r) = E(x(t) x(t + h)}, the spectral 
density of x(t) would be given by 

ss(w) = 7 exp [- iwh] R&z) dh 
m- 

(53) 

w = angular frequency. 
It is easy to show [13] that the average power 

spectral density gives the power density dis- 
tribution with frequency. The power spectral 
density of the temperature in the problem of 
Section 3, paragraph (a)(i) above (& given by 
equation (11) with 5 = x) is found to be 

SO * 
SV(W) = FP2c2 

c 

1 
Us + !cs(n7r/r)4 

sin2y (54) 

n=1 
Fig. 6 shows a plot of the first term approxima- 
tion to S_(w) at x/r = l/2. 

sy (w) -I 
D 

7. CONCLUDING REMARKS 

This paper has shown that the methods of 
applied stochastics as employed in electrical 
communication technology and random vibra- 
tion theory are readily adapted to problems of 
random heat conduction in solids. The time 
derivative term in the heat equation plays the 
same role as velocity damping in random 
vibration theory [6]. Convergence problems for 
the mean square temperature fields are not as 
severe as those for the mean square stress fields 
in random vibration problems [8]. We may, 
however, expect some convergence problems 
for the mean square heat flux for extremely 
wide-band random temperature disturbances. 
This may arise from the fact that we must 
differentiate the temperature series with respect 
to the space variables to get the heat flux. 

Finally, we remark that our solution methods 
include as a special case the problem treated 
by J. Dreyfus [I91 concerning heat transmission 
through building walls with periodic variation 
of external temperatures. 
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R&urn&Plusieurs problemes thtoriques de conduction de la chaleur dans les solides ont Btt etudi&, 
probl?.mes dans lesquels la chaleur engendree z1 l’intkrieur et/au la tempkrature extkrieure sont des 
fonctions stochastiques de la position et du temps. Pour des systemes IinCaires sujets & des peturbations 
al&tories gaussiennes, il est suffisant d’avoir la valeur moyenne et la moyenne quadratique du champ 
de temperature pour determiner compl&tement l’btude statistique. 

Cette faGon de procCder a BtC poursuivie dans les quelques problemes examints. On trouve que les 
problemes de convergence pour les series infinies reprtsentant la moyenne quadratique de la tempCra- 
ture (avec une perturbation en bruit blanc) sont beaucoup moins s&&es que ceux rencontrCs dans la 
theorie des vibrations altatoires oti les Equations aux d&i&es partielles sont de type hyperbolique 
tandis qu’elles sont paraboliques dam la conduction de la chaleur. Des calculs numiriques sont 
effectuCs dans quelques cas avec un calculateur numCrique. 

Quelques commentaires sur le problkme de la tempkrature dans le sol ont Ctt don&. 

Zusammenfassung-Es werden verschiedene Probleme der WIrmeleitung in festen KGrpern untersucht, 
wobei innere Wlrmequellen und/oder die Umgebungstemperatur stochastische Funktionene des 
Ortes und der Zeit sind. Bei linaren Systemen die willkiirlichen Verteilungen nach einem Gausschen 
Prozess unterworfen sind geniigt es den mittleren und den mittleren quadratischen Wert des Tempera- 
turfeldes zu bestimmen urn der vollstLndigen Statistik zu genligen. Dies ist fiir die verschiedenen 
behandelten Probleme durchgefiirht. Es zeigt sich, dass die Konvergenzprobleme fiir die unendlichen 
Reihen der mittleren quadratischen Temperatur (unterhalb der weissen LIrmst&ung) weit weniger 
schwer wiegen als die der Vibrationstheorie, deren bestimmende partielle Differentialgleichungen 
hyperbolischen Charakter besitzen im Gegensatz zu den parabolischen der W&rneleitung. Numerische 
Berechnungen wurden fiir einige Fllle mit einer Digitalrechenmaschine durchgefiirht. 

Hinweise auf das Problem der Erdtemperatur sind gegeben. 

_kEOTf%~&WI-PaCCMOTpeHbI HeCKOJIbKO 3aAaJ' TeIIJIOIIpOBO~HOCTLi TBepAbIX TeJ, KOrAa 

BHyTpeHHee TennoBbIjqeneHne z~/nm TeMnepaTypa 0Kpywalomet cpenbr RBJIFIIOTCH croxa- 
CTWieCKHMM @YHKQllRMM KOOP~RHaT I4 BpeMeHlI. AJIR JIHHetiHbIX CLICTeM, IIOJJBepHceHHbIX 

IlpOlI3BOJIbHbIM B03MY~eHHRM, Ilp&lBO~SllIJllM K IIpOUeCCy, OIlHCbIBaeMOMJ' 3aKOHOM raJ%Ca, 

AOCTaTOqHO OIIpeAenHTb Cpe~HIOhJ I4 CpegHe-KBa~paTWSHJ'lO BeJIWIMHy TeMtIepaTypHOrO 

~O~R,'ITO6bI~CTaHOBHTbe~O~O~H~~CTaTllCT~K~.~TaO~e~a~~RB~~O~H~inaCbBHeCKO~bKMX 

ll3 PaCCMOTPeHHbIX 3aAarI. %IJIO IIOKa3aH0, =ITO 3aAaYll CXOALlMOCTn 6eCKOHeqHbIX PRAOB 

CpeaHe-KBa~paTHsHOti TeMIIepaTJ'pLJ (IIpI4 6eJfO-IUJ'MOBbIX BOBMYT[IeHHBX) rOpa3AO MeHee 

cTporH, 4eM aanasH, BCTpeYaIO~HeCfi B TeOpIlH IIpOT3BOJIbHOit mi6paqlln, rae OCHOBHbIe 

YPaBHeHHRB~aCTHbIXnPOEl3BOAHbIXRBJIRH)TCRYPaBHeH~IIMM rnnep6onHsecKoro THIla,aHe 

napa6onnqecKoro, KaK3TOllMeeTMeCTOB3a~a=iaXTe~~OlIpOBO~HOCTIt. B HeKOTOpbIXCJIy'laflX 
9RCJIeHHbIe PaC'ieTbI IIPOH3BOJQIJIMCb C IIOMO~bIO BbIWCJIHTeJIbHOti MaUIIIHbI. 

PeIIIeHHe YKa3aHHbIX 3aAaq IIO3BOJIHJIO CHeJIaTb HeKOTOpbIe 3aMe9aIiEIR, OTHOCRIIlReCR K 

3aAave 0 TeMnepaType 3ehfmI. 


